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Abstract. We consider the restriction of Brownian shifts to their invariant subspaces
and classify when they are unitarily equivalent. Additionally, we prove an asymptotic
property stating that normalized Brownian shifts belong to the classical C00-class.
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1. Introduction

Let σ > 0 and θ ∈ [0, 2π). The Brownian Shift of covariance σ and angle θ is the
bounded linear operator Bσ,eiθ : H2 ⊕ C→ H2 ⊕ C defined by

Bσ,eiθ =

[
S σ(1⊗ 1)
0 eiθ

]
,

where S : H2 → H2 is the shift operator on H2 and H2 denotes the Hardy space over the
open unit disc D = {z ∈ C : |z| < 1}. Recall that S is the multiplication operator by the
coordinate function z, that is,

Sf = zf,

for all f ∈ H2, and H2 is the Hilbert space of all Lebesgue square integrable functions
on the circle T(= ∂D) and analytic on D. Moreover, the operator 1 ⊗ 1 : C → H2 is
defined by ((1 ⊗ 1)α)(z) = α for all α ∈ C and z ∈ D. Brownian shifts were introduced
by Agler and Stankus in the context of m-isometries [1, Definition 5.5]. These operators
are related to the time-shift operators associated with Brownian motion processes.

Determining the lattice of closed subspaces that are invariant under a given bounded
linear operator is always an interesting problem. When the underlying operator is sim-
ple—particularly for naturally occurring operators—the problem becomes even more in-
triguing. In the case of the Brownian shifts, Agler and Stankus resolved [1] the invariant
subspace problem by following Beurling’s approach [2]. They proved that for a nonzero
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closed subspace M of H2 ⊕C, M is invariant under Bσ,eiθ if and only if it admits one of
the following representations:

M = ϕH2 ⊕ {0},
or

M = C
[
g
1

]
⊕
(
ϕH2 ⊕ {0}

)
,

where ϕ ∈ H∞ is an inner function with the condition that ϕ(eiθ) exists, and

g(z) = σ

(
ϕ(eiθ)ϕ− 1

z − eiθ

)
(z ∈ D).

Following Agler and Stankus, we call the former invariant subspace Type I and the latter
one Type II. We also call them the canonical representations of the invariant subspaces of
Bσ,eiθ . Here, H∞ denotes the space of all bounded analytic functions on D. Recall that
a function g ∈ H∞ is called inner if |g(z)| = 1 almost everywhere on T (in the sense of
radial limits).

Therefore, the lattice of invariant subspaces of a given Brownian shift operator is pa-
rameterized by inner functions in the Type I case, and in the Type II case, by inner
functions satisfying a constraint on the existence of a boundary value at T corresponding
to the given angle of the Brownian shift.

In this paper, we take the Agler-Stankus invariant subspace result to the next natural
step. Specifically, given a pair of closed subspacesM1 andM2 of H2⊕C that are invariant
under the Brownian shifts Bσ1,eiθ1 and Bσ2,eiθ2 , respectively, we consider the restriction
operators Bσ1,eiθ1 |M1 and Bσ2,eiθ2 |M2 on M1 and M2, respectively, and determine when
they are unitarily equivalent. One of the main results of this paper states the following
(see Theorem 2.1): There exists a unitary operator U :M1 →M2 such that

UBσ1,eiθ1 |M1 = Bσ2,eiθ2 |M2U,

if and only if either (i) M1 and M2 are Type I, or (ii) M1 and M2 are Type II and

θ1 = θ2,

and

σ1
σ2

=

√
1 + ‖g1‖2
1 + ‖g2‖2

,

where

Mj = C
[
gj
1

]
⊕
(
ϕjH

2 ⊕ {0}
)
,

is the canonical representation of Mj, j = 1, 2.
Given such a pair of invariant subspaces M1 and M2 as above, we say that M1 and
M2 are unitarily equivalent if there exists a unitary operator U satisfying the above
intertwining relation. Similarly, one can define unitarily equivalent invariant subspaces of
the shift operator on the Hardy space, the Bergman space, the Dirichlet space, and many
more. Invariant subspaces of the shift on H2 are always unitarily equivalent, whereas
they are never unitarily equivalent for the Bergman or Dirichlet spaces [8]. From this
perspective, the Brownian shift exhibits a mixture of invariant subspaces—a property that
is highly distinctive compared to other classical operators (see the examples in Section 4).
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Additionally, we will soon see in (1.1) that these operators are rank-one perturbations of
an isometry. We will further comment on these observations at the end of this paper.

Now we turn to an asymptotic property of Brownian shifts. Let T be a contraction on
a Hilbert space H. We say that T is pure, denoted by T ∈ C·0, if

SOT − lim
m→∞

T ∗m = 0.

Furthermore, we say that T satisfies the C00-property, which we simply write as T ∈ C00,
if both T and T ∗ are pure.

Operators in class C·0 or C00 are of interest. The asymptotic property is often useful in
representing these operators [7]. Examples of operators in C00 include strict contractions.
Moreover, any operator can be scaled by a scalar so that the resulting operator belongs
to C00. However, scaling an operator is not always a desirable method for revealing
its structure. In our present context, we first prove that Brownian shifts are not power-
bounded and, hence, in particular, are not even similar to contractions. Next, we highlight
a peculiar property of Brownian shifts: namely, we prove in Theorem 3.2 that for any
covariance σ > 0 and angle θ ∈ [0, 2π), the normalized operator

1

‖Bσ,eiθ‖
Bσ,eiθ ∈ C00.

There are many reasons to study Brownian shifts, as also pointed out by Agler and
Stankus in their paper [1]. For instance, Brownian shifts play a crucial role in under-
standing the structure of 2-isometries, a notion introduced by Agler decades ago (cf. [5]).
We refer the reader to [1] for representations of 2-isometries and to [6] for some recent
developments. In addition, we highlight that a Brownian shift can be thought of as a
rank-one perturbation of an isometry. Indeed:

Bσ,eiθ = Bs +R, (1.1)

where

Bs =

[
S 0
0 1

]
,

is an isometry, and

R =

[
0 σ(1⊗ 1)
0 eiθ − 1

]
,

is a rank one operator on H2⊕C. The theory of perturbed operators and their invariant
subspaces is certainly of interest. From this perspective, the result of Agler and Stankus
on the invariant subspaces of Brownian shifts is particularly notable. Subsequently, the
present work aims to shed new light on the general theory of operators and functions for
Brownian shifts.

The paper is organized as follows. In Section 2, we present a complete description
of unitarily equivalent invariant subspaces of Brownian shifts. In Section 3, we prove
that normalized Brownian shifts are always in C00. In the final section, Section 4, we
illustrate our results with some concrete examples and point out that Brownian shifts are
irreducible.



4 DAS, DAS, AND SARKAR

2. Unitary equivalence

Recall that the nonzero invariant subspaces of S in H2 are given by ϕH2, where ϕ
runs over all inner functions from H∞ [2]. Given a pair of S-invariant subspaces ϕ1H

2

and ϕ2H
2 for some inner functions ϕ1, ϕ2 ∈ H∞, we consider the restrictions S|ϕ1H2 and

S|ϕ2H2 of S onto ϕ1H
2 and ϕ2H

2, respectively. It is now easy to see that there exists a
unitary operator U : ϕ1H

2 → ϕ2H
2 such that

US|ϕ1H2 = S|ϕ2H2U.

In short, we denote such a unitary equivalence property as

S|ϕ1H2
∼= S|ϕ2H2 .

Therefore, as far as operators are concerned, restrictions of S on its invariant subspaces
do not yield anything new. This prompts the question of distinguishing the restrictions
of Brownian shifts on their invariant subspaces. We remind the reader that the invariant
subspaces of Brownian shifts are also described by inner functions. For Type II invariant
subspaces, these inner functions must additionally attain values at points on the circle
corresponding to the given angles of the associated Brownian shifts. Also, recall that
given a Type II invariant subspace M of a Brownian shift, the canonical representation
of M, as given in the introductory section (Section 1), implies that the function g is in
Kϕ, where

Kϕ = H2 	 ϕH2,

is the model space [7]. This yields the useful relation

g ⊥ ϕH2.

We now investigate the unitary equivalence of the invariant subspaces of Brownian shifts.

Theorem 2.1. Fix angles θ1, θ2 ∈ [0, 2π) and covariances σ1, σ2 > 0. LetM1 andM2 be
nonzero closed invariant subspaces of the Brownian shifts Bσ1,eiθ1 and Bσ2,eiθ2 , respectively.
Then

Bσ1,eiθ1

∣∣
M1

∼= Bσ2,eiθ2

∣∣
M2
,

if and only if any one of the following conditions is true:

(1) BothM1 andM2 are Type I.
(2) BothM1 andM2 are Type II, along with the facts that

θ1 = θ2,

and

σ2
2(1 + ‖g1‖2) = σ2

1(1 + ‖g2‖2),

where Mj = C
[
gj
1

]
⊕ (ϕjH

2 ⊕ {0}) is the canonical representation of Mj, and

gj = σj

(
ϕj(e

iθj )ϕj−1
z−eiθj

)
for j = 1, 2.
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Proof. Let us start with the proof of the “if” part. Provided that condition (1) holds, we
assume M1 = ϕH2 ⊕ {0} and M2 = ψH2 ⊕ {0} for some inner functions ϕ and ψ from
H∞, and consider the unitary operator U :M1 →M2, defined by

U

[
ϕh
0

]
=

[
ψh
0

]
for all h ∈ H2. Then

Bσ2,eiθ2U

[
ϕh
0

]
=

[
S σ2(1⊗ 1)
0 eiθ2

] [
ψh
0

]
=

[
zψh

0

]
= U

[
zϕh

0

]
= UBσ1,eiθ1

[
ϕh
0

]
,

which implies Bσ1,eiθ1

∣∣
M1

∼= Bσ2,eiθ2

∣∣
M2

. This part is the same as the equivalence of

invariant subspaces of S on H2. Next, we assume that (2) is true. Set

θ = θ1 = θ2,

and define µϕj ∈ T as

µϕj = ϕj(eiθj),

for j = 1, 2. Define a linear operator U :M1 →M2 by

U

(
c1µϕ1

[
ϕ1h

0

]
+ c2σ2

[
g1
1

])
= c1µϕ2

[
ϕ2h

0

]
+ c2σ1

[
g2
1

]
,

for all h ∈ H2 and scalars c1, c2 ∈ C. It is evident from the construction that U is
surjective. Moreover, as σ2

2(1 + ‖g1‖2) = σ2
1(1 + ‖g2‖2), we have∥∥∥∥c1µϕ2

[
ϕ2h

0

]
+ c2σ1

[
g2
1

]∥∥∥∥2 = |c1|2
∥∥∥∥[ϕ2h

0

]∥∥∥∥2 + σ2
1|c2|2

∥∥∥∥[g21
]∥∥∥∥2

= |c1|2‖h‖2 + σ2
1|c2|2(‖g2‖2 + 1)

= |c1|2‖h‖2 + σ2
2|c2|2(‖g1‖2 + 1)

=

∥∥∥∥c1µϕ1

[
ϕ1h

0

]
+ c2σ2

[
g1
1

]∥∥∥∥2 .
This implies that U is an isometry, and therefore, is a unitary operator as well. For
notational simplicity, set

F = c1µϕ1

[
ϕ1h

0

]
+ c2σ2

[
g1
1

]
.

We observe that

Bσ2,eiθUF =

[
S σ2(1⊗ 1)
0 eiθ

](
c1µϕ2

[
ϕ2h

0

]
+ c2σ1

[
g2
1

])
= c1µϕ2

[
zϕ2h

0

]
+ c2σ1

[
zg2 + σ2
eiθ

]
= c1µϕ2

[
zϕ2h

0

]
+ c2σ1

(
eiθ
[
g2
1

]
+

[
(z − eiθ)g2 + σ2

0

])
.

At this point, we recall the representation of gj:

gj(z) = σj

(
µϕjϕj − 1

z − eiθj

)
,
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where µϕj = ϕj(eiθ) for j = 1, 2. This yields

(z − eiθ)gj + σj = σjµϕjϕj,

for j = 1, 2. Therefore, we have

Bσ2,eiθUF = c1µϕ2

[
zϕ2h

0

]
+ c2σ1

(
eiθ
[
g2
1

]
+

[
σ2µϕ2ϕ2

0

])
= U

(
c1µϕ1

[
zϕ1h

0

]
+ c2e

iθσ2

[
g1
1

]
+ c2σ1

[
σ2µϕ1ϕ1

0

])
= U

(
c1µϕ1

[
zϕ1h

0

]
+ c2σ2

(
eiθ
[
g1
1

]
+

[
(z − eiθ)g1 + σ1

0

]))
= U

(
c1µϕ1

[
zϕ1h

0

]
+ c2σ2

[
zg1 + σ1
eiθ

])
= UBσ1,eiθ

(
c1µϕ1

[
ϕ1h

0

]
+ c2σ2

[
g1
1

])
,

that is, Bσ2,eiθUF = UBσ1,eiθF , which again ensures that Bσ1,eiθ1

∣∣
M1

∼= Bσ2,eiθ2

∣∣
M2

.

Conversely, let us start by showing that if we assume, without loss of generality, that

M1 = ϕH2 ⊕ {0} is Type I and M2 = C
[
g
1

]
⊕ (ψH2 ⊕ {0}) is Type II, for certain inner

functions ϕ and ψ, then Bσ1,eiθ1

∣∣
M1

and Bσ2,eiθ2

∣∣
M2

are not unitarily equivalent. Indeed,

if it is not true, then, in particular, we will have the norm identity∥∥∥Bσ1,eiθ1

∣∣
M1

∥∥∥ =
∥∥∥Bσ2,eiθ2

∣∣
M2

∥∥∥ .
However, for any h ∈ H2, we have∥∥∥∥Bσ1,eiθ1

[
ϕh
0

]∥∥∥∥ =

∥∥∥∥[zϕh0

]∥∥∥∥ =

∥∥∥∥[ϕh0
]∥∥∥∥ ,

that is,
∥∥∥Bσ1,eiθ1

∣∣
M1

∥∥∥ = 1. On the other hand, we have∥∥∥∥Bσ2,eiθ2

[
g
1

]∥∥∥∥2 =

∥∥∥∥[zg + σ2
eiθ2

]∥∥∥∥2 = 1 + ‖g‖2 + σ2
2 =

∥∥∥∥[g1
]∥∥∥∥2 + σ2

2 >

∥∥∥∥[g1
]∥∥∥∥2 ,

and hence ∥∥∥Bσ2,eiθ2

∣∣
M2

∥∥∥ > 1,

which leads to a contradiction. Therefore, M1 and M2 must be of same type. It is
therefore enough to assume that bothM1 andM2 are of Type II. Consider the canonical
representations of Mj as

Mj = C
[
gj
1

]
⊕
(
ϕjH

2 ⊕ {0}
)
,

where ϕj ∈ H∞ is an inner function, and gj = σj

(
ϕj(e

iθj )ϕj−1
z−eiθj

)
for j = 1, 2. Also suppose

U :M1 →M2 is the unitary operator satisfying the intertwining relation

UBσ1,eiθ1

∣∣
M1

= Bσ2,eiθ2

∣∣
M2
U.
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Let

U

[
g1
1

]
=

[
ϕ2h2

0

]
+ α

[
g2
1

]
,

for some h2 ∈ H2 and α ∈ C. As

∥∥∥∥U [g11
]∥∥∥∥2 = ‖g1‖2 + 1 and ‖ϕ2h2‖ = ‖h2‖, it follows

that

‖g1‖2 + 1 =

∥∥∥∥[ϕ2h2
0

]∥∥∥∥2 + |α|2
∥∥∥∥[g21

]∥∥∥∥2 = ‖h2‖2 + |α|2
(
1 + ‖g2‖2

)
,

that is,
(1 + ‖g1‖2)− |α|2(1 + ‖g2‖2) = ‖h2‖2. (2.1)

Also, since

Bσ1,eiθ1

[
g1
1

]
=

[
zg1 + σ1
eiθ1

]
,

and ‖zg1 + σ1‖2 = ‖g1‖2 + σ2
1 (as σ1 ∈ C, zg1 ∈ zH2, and C ⊥ zH2), we have∥∥∥∥UBσ1,eiθ1

[
g1
1

]∥∥∥∥2 =

∥∥∥∥[zg1 + σ1
eiθ1

]∥∥∥∥2 = ‖g1‖2 + σ2
1 + 1.

Then, UBσ1,eiθ1

∣∣
M1

= Bσ2,eiθ2

∣∣
M2
U implies

‖g1‖2 + σ2
1 + 1 =

∥∥∥∥Bσ2,eiθ2U

[
g1
1

]∥∥∥∥2
=

∥∥∥∥Bσ2,eiθ2

([
ϕ2h2

0

]
+ α

[
g2
1

])∥∥∥∥2
=

∥∥∥∥[zϕ2h2
0

]∥∥∥∥2 + |α|2
∥∥∥∥[zg2 + σ2

eiθ2

]∥∥∥∥2
= ‖h2‖2 + |α|2

(
‖g2‖2 + σ2

2 + 1
)
.

As we already know from (2.1) that 1 + ‖g1‖2 = ‖h2‖2 + |α|2 (1 + ‖g2‖2), we conclude

σ2
1 = |α|2σ2

2. (2.2)

As

[
ϕ2h2

0

]
∈M2, there exist h1 ∈ H2 and scalar β such that

U∗
[
ϕ2h2

0

]
=

[
ϕ1h1

0

]
+ β

[
g1
1

]
.

Since

‖h2‖2 = ‖ϕ2h2‖2 =

∥∥∥∥U∗ [ϕ2h2
0

]∥∥∥∥2 ,
we conclude that

‖h2‖2 =

∥∥∥∥[ϕ1h1
0

]∥∥∥∥2 + |β|2
∥∥∥∥[g11

]∥∥∥∥2 = ‖h1‖2 + |β|2
(
1 + ‖g1‖2

)
.

On the other hand,

‖h2‖2 = ‖zϕ2h2‖2 =

∥∥∥∥[zϕ2h2
0

]∥∥∥∥2 =

∥∥∥∥Bσ2,eiθ2

[
ϕ2h2

0

]∥∥∥∥2 =

∥∥∥∥Bσ2,eiθ2UU
∗
[
ϕ2h2

0

]∥∥∥∥2 .
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Then by the intertwining relation UBσ1,eiθ1

∣∣
M1

= Bσ2,eiθ2

∣∣
M2
U and the representation of

U∗
[
ϕ2h2

0

]
above, we have

‖h2‖2 =

∥∥∥∥UBσ1,eiθ1

([
ϕ1h1

0

]
+ β

[
g1
1

])∥∥∥∥2
=

∥∥∥∥Bσ1,eiθ1

[
ϕ1h1

0

]
+Bσ1,eiθ1β

[
g1
1

]∥∥∥∥2
=

∥∥∥∥[zϕ1h1
0

]∥∥∥∥2 + |β|2
∥∥∥∥[zg1 + σ1

eiθ1

]∥∥∥∥2
= ‖h1‖2 + |β|2

(
‖g1‖2 + σ2

1 + 1
)
.

Combining this with ‖h2‖2 = ‖h1‖2 + |β|2 (1 + ‖g1‖2), we obtain

β = 0,

and hence, the action of U∗ on the vector

[
ϕ2h2

0

]
reduces to U∗

[
ϕ2h2

0

]
=

[
ϕ1h1

0

]
, and

consequently

U

[
ϕ1h1

0

]
=

[
ϕ2h2

0

]
.

As a result, the identity U

[
g1
1

]
=

[
ϕ2h2

0

]
+ α

[
g2
1

]
implies

U

[
g1
1

]
= U

[
ϕ1h1

0

]
+ α

[
g2
1

]
,

that is,

U

[
g1 − ϕ1h1

1

]
= α

[
g2
1

]
.

Recall that g1 ∈ Kϕ1 (the model space corresponding to the inner function ϕ1 in H∞).
Then ϕ1h1 ∈ K⊥ϕ1

= ϕ1H
2 yields

‖g1 − ϕ1h1‖2 = ‖g1‖2 + ‖ϕ1h1‖2 = ‖g1‖2 + ‖h1‖2,

and so

1 + ‖g1‖2 + ‖h1‖2 =

∥∥∥∥U [g1 − ϕ1h1
1

]∥∥∥∥2 = |α|2
∥∥∥∥[g21

]∥∥∥∥2 ,
which implies

1 + ‖g1‖2 + ‖h1‖2 = |α|2(1 + ‖g2‖2).
But, by (2.1), we know that |α|2 (‖g2‖2 + 1) = ‖g1‖2 − ‖h2‖2 + 1. Therefore, ‖h1‖2 +
‖h2‖2 = 0, yielding that

h1 = h2 = 0.

The identity (2.1) then changes to (1 + ‖g1‖2) = |α|2(1 + ‖g2‖2), and then, (2.2) yields
the desired identity

σ2
2(1 + ‖g1‖2) = σ2

1(1 + ‖g2‖2).
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It remains to show that θ1 = θ2. First, we use the intertwining property UBσ1,eiθ1

∣∣
M1

=

Bσ2,eiθ2

∣∣
M2
U to observe that〈

Bσ1,eiθ1

[
g1
1

]
, U∗

[
g2
1

]〉
=

〈
Bσ2,eiθ2U

[
g1
1

]
,

[
g2
1

]〉
.

As U

[
g1
1

]
= α

[
g2
1

]
, we have U∗

[
g2
1

]
= 1

α

[
g1
1

]
(we already know that α 6= 0), and

consequently, the above identity implies

1

α

〈[
zg1 + σ1
eiθ1

]
,

[
g1
1

]〉
= α

〈[
zg2 + σ2
eiθ2

]
,

[
g2
1

]〉
,

which is same as saying〈
eiθ1
[
g1
1

]
+

[
(z − eiθ1)g1 + σ1

0

]
,

[
g1
1

]〉
= |α|2

〈
eiθ2
[
g2
1

]
+

[
(z − eiθ2)g2 + σ2

0

]
,

[
g2
1

]〉
.

Again, recall that

(z − eiθj)gj + σj = σjµϕjϕj,

for j = 1, 2. Then〈
eiθ1
[
g1
1

]
+

[
σ1µϕ1ϕ1

0

]
,

[
g1
1

]〉
= |α|2

〈
eiθ2
[
g2
1

]
+

[
σ2µϕ2ϕ2

0

]
,

[
g2
1

]〉
,

and so

eiθ1
∥∥∥∥[g11

]∥∥∥∥2 = eiθ2|α|2
∥∥∥∥[g21

]∥∥∥∥2 ,
that is,

eiθ1
(
1 + ‖g1‖2

)
= eiθ2|α|2(1 + ‖g2‖2).

As we already know that (1 + ‖g1‖2) = |α|2(1+‖g2‖2), we conclude that eiθ1 = eiθ2 . Since
θ1, θ2 ∈ [0, 2π), we finally conclude that θ1 = θ2. �

Therefore, in contrast to the shift operators on the Hardy space, the invariant subspaces
of the Brownian shifts lead to different operators. In the final section of this paper, we
will illustrate these results with concrete examples.

3. 1√
1+σ2Bσ,eiθ ∈ C00

The aim of this section is to prove that Brownian shifts, when scaled by their reciprocal
norms, belong to C00. Scaling an operator by its reciprocal norm does turn it into a
contraction, but does not necessarily place it in the class C00 (nor even C·0). Simply
consider a unitary operator or the shift. This is where Brownian shifts exhibit different
behavior.

We first prove that Brownian shifts are not even similar to contractions, and we establish
this by showing that they are not power-bounded. Recall that a bounded linear operator
A acting on a Hilbert space H is said to be power bounded if the sequence of real numbers

{‖An‖}∞n=1,
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is bounded. It is evident that any bounded linear operator similar to a contraction is
power-bounded; however, the converse is far from being true. Let us fix a Brownian shift
Bσ,eiθ . Observe that

Bσ,eiθ

[
0
1

]
=

[
S σ(1⊗ 1)
0 eiθ

] [
0
1

]
=

[
σ
eiθ

]
.

In general, by the principle of mathematical induction, we conclude that

Bm
σ,eiθ

[
0
1

]
=

[
σ
∑m−1

k=0 e
ikθzm−k−1

eimθ

]
, (3.1)

for all m ≥ 1. Using the norm of functions in H2, we conclude that∥∥∥∥[σ∑m−1
k=0 e

ikθzm−k−1

eimθ

]∥∥∥∥2 = 1 +mσ2.

As

∥∥∥∥[01
]∥∥∥∥ = 1, it follows that

∥∥Bm
σ,eiθ

∥∥2 ≥ ∥∥∥∥Bm
σ,eiθ

[
0
1

]∥∥∥∥2 = 1 +mσ2 →∞,

as m→∞. This proves the following:

Proposition 3.1. Bσ,eiθ on H2 ⊕ C is not power bounded.

This in particular shows that Bσ,eiθ is not similar to contractions. However, the following
is true:

Theorem 3.2. 1
‖B

σ,eiθ
‖Bσ,eiθ ∈ C00 for all σ > 0 and θ ∈ [0, 2π).

Proof. Let us begin by computing the norm of Bσ,eiθ . For any

[
f
α

]
∈ H2 ⊕ C with unit

norm ‖f‖2 + |α|2 = 1, we have, in particular, that |α| ≤ 1. Moreover,∥∥∥∥Bσ,eiθ

[
f
α

]∥∥∥∥2 =

∥∥∥∥[zf + σα
eiθα

]∥∥∥∥2 = ‖zf + σα‖2 + |α|2 = 1 + σ2|α|2 ≤ 1 + σ2,

and equality occurs for f = 0, α = 1. Therefore, we have the norm of Bσ,eiθ as

‖Bσ,eiθ‖ =
√

1 + σ2.

Consequently, the operator

B̃ :=
1√

1 + σ2
Bσ,eiθ ,

becomes a contraction on H2 ⊕ C. Pick u ∈ H2 ⊕ C and write

u = c0

[
0
1

]
+
∞∑
k=0

ck+1

[
zk

0

]
∈ H2 ⊕ C,
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for some ck ∈ C for k ≥ 0. Making use of (3.1), a little computation reveals, for each
n ≥ 1, that

∥∥∥B̃nu
∥∥∥2 =

1

(1 + σ2)n

∥∥∥∥∥c0Bn
σ,eiθ

[
0
1

]
+
∞∑
k=0

ck+1B
n
σ,eiθ

[
zk

0

]∥∥∥∥∥
2

=
1

(1 + σ2)n

∥∥∥∥∥c0
[
σ
∑n−1

k=0 e
ikθzn−k−1

einθ

]
+
∞∑
k=0

ck+1

[
zn+k

0

]∥∥∥∥∥
2

=
1

(1 + σ2)n

(
|c0|2

∥∥∥∥[σ∑n−1
k=0 e

ikθzn−k−1

einθ

]∥∥∥∥2 +
∞∑
k=0

|ck+1|2
∥∥∥∥[zn+k0

]∥∥∥∥2
)

=
1

(1 + σ2)n

(
|c0|2(1 + nσ2) +

∞∑
k=0

|ck+1|2
)
,

and hence

∥∥∥B̃nu
∥∥∥2 ≤ ‖u‖2 + n|c0|2σ2

(1 + σ2)n
≤ 2

σ4

(
‖u‖2

n(n− 1)
+
σ2|c0|2

n− 1

)
−→ 0,

as n→∞. This implies that B̃∗ ∈ C.0. On the other hand, we have

B̃∗n
[
0
1

]
=

1

(1 + σ2)
n
2

B∗
n

σ,eiθ

[
0
1

]
=

e−inθ

(1 + σ2)
n
2

[
0
1

]
,

for all n ≥ 1. Moreover, if 0 ≤ k < n, then

B̃∗n
[
zk

0

]
=

1

(1 + σ2)
n
2

B∗
n

σ,eiθ

[
zk

0

]
=

1

(1 + σ2)
n
2

B∗
n−k

σ,eiθ

[
1
0

]
=

σ

(1 + σ2)
n
2

B∗
n−k−1

σ,eiθ

[
0
1

]
,

that is,

B̃∗n
[
0
1

]
=
σe−i(n−k−1)θ

(1 + σ2)
n
2

[
0
1

]
.

Finally, for k ≥ n, we have

B̃∗n
[
zk

0

]
=

1

(1 + σ2)
n
2

B∗
n

σ,eiθ

[
zk

0

]
=

1

(1 + σ2)
n
2

[
zk−n

0

]
.
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Therefore, we have∥∥∥B̃∗nu∥∥∥2 =

∥∥∥∥∥c0B̃∗n
[
0
1

]
+

n−1∑
k=0

ck+1B̃
∗n
[
zk

0

]
+
∞∑
k=n

ck+1B̃
∗n
[
zk

0

]∥∥∥∥∥
2

=
1

(1 + σ2)n

∥∥∥∥∥
(
c0e
−inθ + σ

n−1∑
k=0

ck+1e
−i(n−k−1)θ

)[
0
1

]
+
∞∑
k=n

ck+1

[
zk−n

0

]∥∥∥∥∥
2

=
1

(1 + σ2)n

∣∣∣∣∣c0e−inθ + σ
n−1∑
k=0

ck+1e
−i(n−k−1)θ

∣∣∣∣∣
2

+
∞∑
k=n

|ck+1|2


≤ 1

(1 + σ2)n

(
(1 + nσ2)

(
n∑
k=0

|ck|2
)

+
∞∑
k=n

|ck+1|2
)

≤ ‖u‖2 2 + nσ2

(1 + σ2)n

≤ 2‖u‖2

σ4

(
2

n(n− 1)
+

σ2

n− 1

)
,

which tends to 0 as n→∞. As a result, B̃ ∈ C.0. This completes the proof. �

As we have proved in the theorem above that ‖Bσ,eiθ‖ =
√

1 + σ2, it follows that
1√

1+σ2Bσ,eiθ ∈ C00. In particular, if M is an invariant subspace of Bσ,eiθ , then the restric-

tion operator
1√

1 + σ2
PM⊥Bσ,eiθ |M⊥ ∈ C·0.

4. Examples

The purpose of this section is to illustrate the classification result, Theorem 2.1, using
concrete examples. We aim to specifically show that Theorem 2.1 indeed provides exam-
ples of unitarily as well as non-unitarily equivalent invariant subspaces of Brownian shifts.
We also prove that Brownian shifts do not have nontrivial reducing subspaces.

We will present two examples, and Blaschke factors will play a role in both of them.
For each α ∈ D, the Blaschke factor bα corresponding to α is defined by

bα(z) =
z − α
1− ᾱz

,

for all z ∈ D. Blaschke factors are the simplest examples of inner functions.

Example 4.1. For {α1, α2} ⊆ (0, 1), consider inner functions ϕj = bαj , j = 1, 2. Also,
for each θ1, θ2 ∈ [0, 2π) and σ1, σ2 > 0, define gj ∈ H2 by

gj(z) = σj
ϕj(z)ϕj(eiθj)− 1

z − eiθj
,

for j = 1, 2. It is easy to see that

‖gj‖2 = σ2
j

∥∥∥∥ 1− α2
j

(1− αjeiθj)(1− αjz)

∥∥∥∥2 = σ2
j

1− α2
j

1 + α2
j − 2αj cos θj

,
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for j = 1, 2. In particular, for the choice θ1 = θ2 = 0, we have

‖gj‖2 = σ2
j

1 + αj
1− αj

,

and therefore, a little computation reveals that σ2
2(1 + ‖g1‖2) = σ2

1(1 + ‖g2‖2) is satisfied,
provided we have

1

σ2
1

− 1

σ2
2

=
2(α2 − α1)

(1− α1)(1− α2)
.

In particular, in view of Theorem 2.1, if the pairs {α1, α2} and {σ1, σ2} fail to satisfy the
above identity, then Bσ1,1

∣∣
M1

and Bσ2,1

∣∣
M2

are not unitarily equivalent, where

Mj = C
[
gj
1

]
⊕ (ϕjH

2 ⊕ {0}),

for j = 1, 2.

In the following example, we bring a singular inner function with a single atom.

Example 4.2. For α ∈ (0, 1), consider the inner function ϕ1 = bα, and the other inner
function as

ϕ2(z) = exp

(
z + 1

z − 1

)
,

for all z ∈ D. As usual, for each θ1, θ2 ∈ [0, 2π) and σ1, σ2 > 0, define gj ∈ H2 by

gj(z) = σj
ϕj(z)ϕj(eiθj)− 1

z − eiθj
,

for j = 1, 2. Let us first assume θ1 = θ2 = π. From the calculations of our previous
example, we know that

‖g1‖2 = σ2
1

1− α2

1 + α2 − 2α cos π
= σ2

1

1− α
1 + α

.

Now, we compute the norm of g2 as

‖g2‖2 = σ2
2

∥∥∥∥∥exp
(
z+1
z−1

)
− 1

z + 1

∥∥∥∥∥
2

=
σ2
2

2π

∫ 2π

0

∣∣∣∣∣∣
exp

(
eiθ+1
eiθ−1

)
− 1

eiθ + 1

∣∣∣∣∣∣
2

dθ.

A straightforward calculation gives∣∣∣∣∣∣
exp

(
eiθ+1
eiθ−1

)
− 1

eiθ + 1

∣∣∣∣∣∣
2

=
1− cos

(
sin θ

1−cos θ

)
1 + cos θ

=
sin2

(
1
2

cot θ
2

)
cos2 θ

2

.

We put x = 1
2

cot θ
2
, and change the variable from θ to x to see∫ 2π

0

∣∣∣∣∣∣
exp

(
eiθ+1
eiθ−1

)
− 1

eiθ + 1

∣∣∣∣∣∣
2

dθ =

∫ 2π

0

sin2
(
1
2

cot θ
2

)
cos2 θ

2

dθ =

∫ ∞
−∞

sin2 x

x2
dx = π.

As a result,

‖g2‖2 =
σ2
2

2
,
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and hence, the relation σ2
2(1 + ‖g1‖2) = σ2

1(1 + ‖g2‖2) is satisfied under the condition

1

σ2
1

− 1

σ2
2

=
3α− 1

2(1 + α)
.

Therefore, in this case also, there is an abundance of examples of invariant subspaces of
Brownian shifts, both unitarily equivalent and non-equivalent.

We will close this paper with the following result, proving that Bσ,eiθ is irreducible.
Recall that a bounded linear operator A acting on a Hilbert space H is irreducible if there
is no nontrivial closed subspace of H that reduces A.

Proposition 4.3. Bσ,eiθ on H
2⊕C is irreducible for all angle θ ∈ [0, 2π) and covariance

σ > 0.

Proof. Fix θ ∈ [0, 2π) and σ > 0. Let M be a nonzero closed subspace of H2 ⊕ C that
reduces Bσ,eiθ . If possible, assume that M ⊆ H2 ⊕ {0}. There exists a closed subspace

M̃ ⊆ H2 such that M = M̃ ⊕ {0}. Then M̃ reduces S, and the irreducibility of S
implies that M̃ = H2. However, considering the adjoint of Bσ,eiθ , it is evident that
M = H2 ⊕ {0} cannot reduce Bσ,eiθ . Therefore, we must assume that M * H2 ⊕ {0}.

There exists

[
f
α

]
∈M such that α 6= 0. Now,M being a reducing subspace of Bσ,eiθ , we

have [
f

σ2α + α

]
= B∗σ,eiθBσ,eiθ

[
f
α

]
∈M.

Then [
f

σ2α + α

]
−
[
f
α

]
=

[
0
σ2α

]
∈M,

implies

[
0
1

]
∈M (as σ2α 6= 0). Since Bσ,eiθ

[
0
1

]
=

[
σ
eiθ

]
∈M, it follows that[

σ
eiθ

]
− eiθ

[
0
1

]
= σ

[
1
0

]
∈M,

and hence,

[
1
0

]
∈M. Therefore, for any n ≥ 0 we have

Bn
σ,eiθ

[
1
0

]
=

[
zn

0

]
∈M.

Consequently, M = H2 ⊕ C and this proves the theorem. �

In closing, we remark that unitary equivalence or nonequivalence of operators arising
from natural operators defined on Hilbert spaces is a fundamental and decades-old prob-
lem (cf. [3, 4]). On one hand, it raises the question of defining new classes of operators
from invariant subspaces, and on the other, it analyzes the characteristics of these opera-
tors under consideration. For instance, as already pointed out, among known operators,
the shift on the Hardy space always yields unitarily equivalent invariant subspaces. At the
other extreme, the Bergman shift and the Dirichlet shift never yield unitarily equivalent
invariant subspaces [8]. We have now enlarged this list by observing that the Brownian
shift sometimes yields unitarily equivalent invariant subspaces and sometimes does not.
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This is particularly intriguing, as we have pointed out in (1.1) that a Brownian shift is a
rank-one perturbation of an isometry.
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